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Abstract
The electrical resistivity of a metal close to a weakly first-order paramagnetic-
to-ferromagnetic transition at T = 0 is determined assuming that droplets
of magnetic order remain in the paramagnetic state. Using an elementary
model of spin-diffusion to describe the spin dynamics, it is found that, at low
temperatures, the resistivity ρ varies as ρ = ρ0 + aT 3/2. The temperature-
dependent term occurs because of the scattering of electrons by low-frequency
spin fluctuations propagating normal to the surface of the ferromagnetic regions.
The temperature dependence is in agreement with recent measurements made
on MnSi at pressures above the critical pressure. The pressure dependence of
the model prediction for a is also found to be in qualitative agreement with the
variation observed experimentally above the critical pressure.

When the itinerant ferromagnet MnSi is studied under applied pressures large enough to
suppress ferromagnetism at T = 0 (i.e. P > PC), an unusual paramagnetic phase is seen.
This was discovered through recent measurements [1] of the electrical resistivity ρ in this
system, which showed that ρ = ρ0 + ρ(T ), where ρ(T ) = aT 3/2 over temperatures ranging
from 50 mK to 6 K, and over a pressure range extending from the critical pressure PC to more
than 2PC. The measured resistivity contradicts Fermi-liquid theory, which predicts that ρ(T )
should be proportional to T 2 at low T . Conventional theory of ferromagnetic metals [2–6]
allows for violations of Fermi-liquid behaviour at finite temperatures near a phase transition,
but does not predict well-defined T 3/2 behaviour, and thus cannot account for the data. The
breakdown of Fermi-liquid theory was particularly surprising given that the T = 0 transition
with pressure is first order, so that critical fluctuations are not expected to be significant even
close to PC. The finding has stimulated a renewal of interest in this material [7, 10–13].

In an attempt to explain the T -dependence of the electrical resistivity, the authors of [1]
suggested that droplets of ferromagnetic order might remain in the system at pressures well
above PC, and that spin fluctuations associated with these droplets could provide a scattering
mechanism that leads to non-Fermi-liquid behaviour. They pointed out that this scenario is
plausible in MnSi, since the phase transition is only weakly first order and thus the free-energy
cost of ferromagnetic regions in the paramagnetic state should be relatively small. Recent
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NMR measurements [7] made on MnSi above PC at low temperature have also indicated the
presence of spatial inhomogeneity in the electronic spin system, which may be interpreted as
support for the droplet picture.

In this paper I investigate this picture using a very simple approach. I assume that
such ferromagnetic regions exist at P > PC and determine their expected effect on the low-
frequency spin dynamics using a phenomenological spin-diffusion model. I then calculate the
electrical resistivity that results when electrons are scattered mainly by the long-wavelength
spin fluctuations associated with the relaxation of magnetic order in the droplets.

As the main result of this paper, I find that the observed temperature dependence of the
resistivity, ρ(T ) = aT 3/2, emerges as low-temperature behaviour of the model. (The constant
ρ0 term is attributed to scattering from impurities and will not be discussed.) The most
intriguing aspect of the MnSi resistivity data, the persistence of the T 3/2-dependence down to
millikelvin temperatures, is thus captured. I compare the predicted pressure dependence of
the coefficient a with the observed variation and find qualitative agreement.

The presentation of this paper will be given as follows. I shall begin by deriving an
effective dynamic spin susceptibility assuming that the low-frequency response is dominated
by the droplets. I calculate the imaginary part of the electron self-energy to lowest order (with
the derived dynamical susceptibility playing the role analogous to the phonon propagator in the
corresponding lowest-order electron–phonon diagram) and insert the result into a Boltzmann
expression for the current in order to obtain ρ(T ). After this I will discuss some of the
assumptions used in the model before concluding.

The rate of relaxation of the spin density near a region of ferromagnetic order is expected
to occur via diffusion of spins through the surface of the region [8, 9]. Taking ψ(r, t) to be
the expectation value of the ẑ-component spin-density, I assume that the relaxation may be
described using a diffusion equation:

∂

∂ t
ψ(r, t) = D̃

∂2

∂r2
n

[ψ(r, t) − ψ0(r, t)] (1)

where D̃ is a diffusion constant, rn is the component normal to the surface and ψ0(r, t) is the
corresponding equilibrium spin density in the presence of a weak time- and space-dependent
magnetic field parallel to ẑ with magnitude h(r, t). Using mean field theory, the equilibrium
part is obtained as

ψ0(r, t) = χ0[h(r, t) + (α + c∇2)ψ(r, t)] (2)

whereχ0 is the spin susceptibility of a non-interacting system andα, c are constants. Assuming
a plane-wave form for both the applied field and the spin density, the dynamic spin susceptibility
is obtained1 from equations (1) and (2) as

χ−1(q, ω) = χ−1
q [1 − iω/�q], (3)

where

�q = Dq2
nχ

−1
q , (4)

qn is the component of the wavevector in the direction normal to the droplet surface and
D = χ0 D̃ defines a new diffusion constant. The static susceptibility may be written in terms
of a static correlation length ξ (and the constant α thus eliminated) as

χ−1
q = χ−1 + cq2 with χ−1 = cξ−2. (5)

Some spatial dependence corresponding to the distribution of droplets is contained
implicitly in equation (4) since q̂n must be interpreted as the direction normal to the nearest

1 M B Walker suggested a similar form for χ(q, ω) in private communication with the author.
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droplet surface. When I calculate the electrical resistivity, I simulate an average over different
spatial configurations of the droplets by averaging over q̂n. In addition, a minimum cutoff of
qn will be imposed, such that qn > q0, where q−1

0 is regarded as the characteristic length scale
of the fluctuations2. Finally, the number density of the droplets will be incorporated into an
electron-spin fluctuation coupling parameter J 2 that is introduced below. It will be assumed
in this paper that, at sufficiently low-T in the vicinity of the pressure-induced critical point, ξ ,
q0 and J 2 depend on pressure but are independent of temperature.

Lonzarich and Taillefer [5] (henceforth LT) derived an expression for the dynamic
susceptibility of a nearly ferromagnetic metal starting from a simple microscopic model.
(Although similar expressions can be found in other works, reference [5] is convenient for
present purposes since LT made a detailed analysis of MnSi data.) Their result is of the same
form as equations (3) and (5), but instead of equation (4) they used �q = γ qχ−1

q , where γ is
a constant, which describes Landau damping of spin fluctuations. They found that the low-
pressure magnetic properties of MnSi can be explained using their model with values for γ
and c obtained from neutron scattering measurements. I shall make use of the correspondence
between the current model and that of LT. The values of c and γ that LT obtained will be
assumed to be approximately correct over the high-pressure range considered here, and will
thus be used, along with the measured homogenous susceptibility χ(P > PC), for numerical
estimates. The model for the electrical resistivity that I study depends on the remaining
parameters D and q0, as well as the factor J 2 that contributes to the overall scale.

By adopting the phenomenological expression, equation (4), to describe diffusive spin
relaxation occurring in the high-pressure paramagnetic state, I find below that the anomalous
T 3/2 term in the resistivity is naturally explained. Since this diffusive mechanism is not
expected to be important within the ordered state, it is reasonable to expect an abrupt change
in the qualitative behaviour of the resistivity to occur at the first-order phase transition, as is
observed [1] (ρ(T ) ∝ T 2 at low T in the ferromagnetic state of MnSi). Only the paramagnetic
state, with zero applied magnetic field, will be considered in this paper.

The imaginary part of the retarded electron self-energy, calculated to lowest order in the
interaction with the spin fluctuations described above, is

Im
R(p, ω) = −J 2n0
V

(2π)3

∫
dε ε( f (ε + ω) + n(ε))

∫
dSk

|vk|
χk−p�k−p

ε2 + �2
k−p

, (6)

where I have introduced the (pressure-dependent) coupling energy J 2 and where n0 is the
density of states, vk is the Fermi velocity, V is the sample volume, f (ε), n(ε) are Fermi, Bose
functions and the second integral is over the Fermi surface. I will not go beyond this lowest-
order calculation of the self-energy. The spin-susceptibility in equation (6) is an effective
expression and will thus not be renormalized (the effect of Landau damping will be discussed
briefly below) while imaginary self-energy corrections to the electron propagator can be ignored
at sufficiently low T since it is determined below that the scattering rate vanishes at least as
quickly as T 3/2.

For simplicity, I consider a single isotropic band. The average over q̂n, denoted by large
angular brackets in equation (7), gives the following:〈 ∫

dSk

|vk|
χk−p�k−p

ε2 + �2
k−p

〉
= π

v f

√
Dε

∫ qc

q0

dq χ3/2
q κq(ε), (7)

2 It is assumed that ferromagnetic regions exist, but left undetermined whether the regions are purely dynamic or static
regions with a dynamic surface [7]. The length scale q−1

0 can be regarded as the size of the droplet in the former case
and the thickness of the surface in the latter. Also, the model may be applicable (at least for the scattering contribution
of longitudinal spin fluctuations) if the ferromagnetic volume fraction is significant as long as the measured χ , which
contains information about the pressure dependence of the ferromagnetic volume fraction, is used.
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where

κq(ε) =
∫ x2

x1

dx tan1/2(x) (8)

and

x1 = arctan

(
Dq2

0χ
−1
q

ε

)
, x2 = arctan

(
Dq2χ−1

q

ε

)
. (9)

An upper limit of the q-integral qc has been introduced. The Fermi surface imposes a limit
q < 2k f , but the model for the susceptibility is expected to break down for values of q that
are considerably smaller. I shall assume that qc is some reasonable fraction of k f .

The value of ξ is estimated [1] to be 6 Å for MnSi at pressures just above PC and to be
slightly smaller at 2PC (this is determined using the value c = 2.1 × 104 Å2 obtained by LT
and the measured static homogenous susceptibility χ = ξ2/c from [14]). It is thus expected
that qc � ξ−1, which means that χq can be well approximated by χ over the pressure range of
interest.

The low-energy limit is defined by ε � kBT0, where

kBT0 = Dq2
0χ

−1 (10)

is the crossover temperature. In this limit, κq(ε) =
√
ε/(Dq2

0χ
−1), and thus the Fermi-

surface integral is independent of energy. The electron scattering rate τ−1 is determined from
equations (6) and (7) to be

τ−1(T ) = −2Im
(T ) = K
(kBT )2

kBT0
, (11)

where the dimensionless prefactor is given by

K = J 2n2
0π

2

4

(
χqcq0

k2
f

)
. (12)

The limit kBT � ω has been taken to obtain the T -dependent scattering rate (the opposite
limit gives the same result to within a factor of order unity with kBT replaced by ω).

The T 2 Fermi-liquid behaviour is retained as the low-T limit of the electron–electron
scattering rate. From equation (10), the crossover temperature T0 is proportional to q2

0ξ
−2, so

T0 decreases as the square of the droplet size (see footnote 2) q−1
0 , and thus becomes low if

the droplets become large while the static correlation length remains small. The correlation
length ξ is only weakly pressure dependent above PC (according to [1], it increases by less
than a factor of two, reaching its maximum of 6 Å when the pressure is decreased from 2PC

to PC). Naively, one expects that q−1
0 will decrease with increasing pressure above PC. This

would indicate an increase of T0 with pressure, and thus a return to Fermi-liquid behaviour at
sufficiently large pressure for any given temperature.

At energies above kBT0 and below3 kBT1 = Dq2
cχ

−1, the q integral is dominated
by q ≈ qc. Thus one takes x1 = 0 and x2 = π/2 so that equation (8) becomes κq(ε) = π/

√
2.

The scattering rate is then found as

τ−1(T ) = Kη
(kBT )3/2√

kBT0
, (13)

3 The limit of kBT � kBT1 is not applicable here, since ξ−1 is fairly large. However, this limit of the model could be
relevant close to a change from a second- to first-order transition at low T , and it gives interesting non-Fermi-liquid
behaviour.
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where η ≈ 2.70 and the other quantities were defined previously. Over this temperature range,
scattering is dominated by the dynamic fluctuations associated with the diffusive relaxation
described above.

If the scattering rate of equation (13) is inserted as the current-relaxation rate τ−1
el in the

Boltzmann expression for the electric current, then the anomalous T -dependence of ρ(T )
observed in MnSi is obtained (vertex corrections are not expected to play a major role, as
discussed below). Equation (13) is the main result of the paper.

The coefficient in front of the T 3/2 term in the resistivity is observed to decrease slowly
with pressure above PC (it decreases by a factor of two in going from PC to 2PC). It is clear that
equation (13) is consistent with this result, since the coefficient is proportional to J 2ξ3 and both
ξ and J 2 are expected to decrease gradually with pressure above PC (note that equation (13)
is independent of q0). The observed pressure dependence is so weak, however, that variation
in D and in the Fermi-surface parameters might also contribute.

In order to establish constraints on the parameters D and q0, I consider the experimental
temperature range over which the T3/2-dependence is seen. For pressures between PC and 2PC,
the T 3/2-behaviour was reported [1] for temperatures ranging from the minimum measurable
temperature of 50 mK up to at least 6 K. If the results above are to be consistent with the data
then it is required that T0 < 50 mK and T1 > 6 K over the stated pressure range. Using the
measured static susceptibility and the fact that qc � k f , the condition on T1 at 2PC implies
that D > 7 × 10−5 eV Å2. Also, comparing the condition on T0 at PC with that on T1 at 2PC

and vice versa, one can set a lower limit on the length scale q−1
0 given by

q−1
0 (PC) > k−1

f

√
χ−1(Pc)

χ−1(2PC)

6 K

50 mK
≈ 16k−1

f (14)

and similarly, q−1
0 (2PC) > 7k−1

f (I have taken D to be independent of pressure). The length
scale of the droplet must be considerably larger than a lattice constant if the results given here
are to be compatible with the resistivity data. Of course, it was assumed that q−1

0 � k−1
f in the

original derivation of equations (3) and (4). Thus the experimentally determined requirement,
equation (14), is consistent with the basic assumption of the present model.

There are a number of approximations made in the development of equation (13) that
should be clarified. First, Landau damping was ignored at all temperatures. Since Landau
damping is linear in q , it must dominate over the Dq2

n diffusion term at sufficiently small q ,
which could be expected to result in a restoration of Fermi-liquid behaviour at low T . The case
in which both Landau damping and diffusive relaxation are important is difficult to treat without
some microscopic understanding of the Dq2

n term. I shall thus attempt only to demonstrate that
a Landau damping term, if included as an additive spin relaxation mechanism in equation (4),
would not have a significant effect on the resistivity in the T 3/2 regime. The value of the
coefficient determining the magnitude of Landau damping was determined by LT for MnSi
to be γ = 2.6 × 10−6 eV Å. From the above lower-limit estimate for D, it is found that
Landau damping would only be expected to provide the dominant scattering mechanism when
qn � γ /D ≈ 0.03 Å−1. Since such small momentum transfers, i.e. those for which q � k f ,
have little effect on the electric current, they are not expected to influence the resistivity. In
other words, the inclusion of vertex corrections to the current-relaxation rate is expected to
remove the contribution of those q for which Landau damping is important. This justifies the
omission of Landau damping above while reducing the status of the model spin susceptibility,
equation (3), to that of a model applicable only to calculations of transport properties, or other
properties for which the effects of such small q can be ignored.

As implied in the previous paragraph, the substitution of equation (13) into the
Boltzmann expression for the resistivity corresponds to a neglect of vertex corrections to the
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current–current correlation function. Vertex corrections are not expected to be crucial [15]
when the typical scattering event that contributes to the imaginary part of the self-energy is
such that it effects a significant change in the electron velocity vp. Since the q integral in
equation (7) is dominated by q ≈ qc � k f in the case for which the T 3/2 behaviour occurs,
vertex corrections are expected to play a relatively minor role. Here it is also interesting to
note that bandstructure studies of MnSi have revealed that its Fermi surface offers an unusually
large phase space for small-q scattering events in which vp changes significantly. (This has
been pointed out in [16], see also [17], and is due to the fact that the Fermi surface includes a
pair of large open sheets that remain very close together throughout the Brillouin zone so that
interband scattering events, which can result in a significant change of |vp| and v̂p, are likely
to occur.) This may give some indication as to what are the properties peculiar to MnSi that
give rise to the anomalous transport behaviour described in this paper.

Finally, it should be acknowledged that, without independent estimates of the parameters
D and q0, it is impossible to say whether the predicted crossover temperature T0 is low enough
to account for the observed non-Fermi-liquid behaviour in MnSi. However, the main point
of this article is that for suitable values of D and q0, the correct temperature dependence of
ρ(T ) is obtained. In comparison, the model of LT (i.e. the model in which �q in equation (3)
is taken to have the Landau-damping form) also predicts Fermi-liquid behaviour below a
crossover temperature T ∗ with non-Fermi-liquid behaviour occurring above this temperature.
The authors of [1] observed that T ∗ can be estimated from experiment and is found to be
more than an order of magnitude too large to explain the data. It should also be emphasized
that, even if T ∗ had been sufficiently low, the ρ(T ) predicted by the LT model would not be
proportional to T 3/2 over any substantial temperature range [1, 14]. Thus the value of the
present work is that a qualitatively correct description of ρ(T ) has been obtained starting from
a simple physical picture of the paramagnetic phase near PC.

In summary, I have developed a theoretical model of the electrical resistivity near a weakly
first-order phase transition to ferromagnetism. I have shown that the unusual temperature
dependence observed in the low-T resistivity of MnSi can be explained by identifying the main
source of electron scattering as dynamic fluctuations in the spin density, which are treated using
a spin-diffusion model. The phenomenological description presented here may be useful as a
first step towards understanding the high-pressure phase in MnSi, especially given the close
connection to well-known models of itinerant ferromagnets that should be applicable in the
ordered state. However, a better understanding of the spatial structure of the spin system at
low T and pressures above PC is needed.
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